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The diffraction limit for lensless imaging, 
defined as the sharpest possible point im- 
age obtainable with a pinhole aperture, is 
analyzed and compared to the corre- 
sponding limit for imaging with lenses by 
means of theoretical considerations and 
numerical computations using the Fresnel- 
Lommel diffraction theory for circular 
apertures. The numerical result (M = TI) ob- 
tained for the best configuration parame- 
ter M which defines the optical setup is con- 
sistent with the quarter-wave criterion, 
and is the same as the value reported in a 
classical paper by Petzval but smaller 
than the value (H = I.STT) found by Lord 
Rayleigh. The smallest discernible detail 
(pixel) in a composite image is defined by 
an expression found by Rayleigh on ap- 

plying the half-wave criterion and is shown 
to be consistent with the Sparrow crite- 
rion of resolution. The numerical values of 
other measures of image size are re- 
ported and compared to equivalent parame- 
ters of the Fraunhofer-Airy profile that 
governs imaging with lenses. 
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1.    Introduction 

Lensless imaging is known as the basis of the camera 
obscura, or pinhole imagery. It has modern technical 
and scientific applications where the use of lenses is not 
possible (e.g., x-ray optics) or must be avoided (e.g., 
illumination of absolute radiometers). The underlying 
concept is illustrated in Fig. 1: A small circular aperture 
si limits the pencil of rays proceeding from a luminous 
point Po in an object plane S^o and, thus, produces an 
image in the form of a small patch of light BPCB' on a 
screen S^. It is customary to describe this image in terms 
of a dimensionless image coordinate v and configuration 
parameter u defined as 

V = - 
2'iT'ac 

~I7~ 
2Tva\ro + r) 

Xrov 

where A is the wavelength of light, a is the radius of the 
aperture, ro and r are the object and image distances 
shown in the figure,' O is the aperture center, A is a 
point on the aperture rim, and c = CP is the radial dis- 
tance from the image center C. As it is the object of this 
paper to assess the actual width of the image produced 
by an aperture of given radius a, we will use vlwu 
instead of v as the image coordinate because it is propor- 
tional to c but independent of a. 

' A paraxial approximation, cos/3 = 1, is assumed throughout this pa- 
per because this assumption is implicit in Eqs. (4a,b) and (6a). Without 
it, fo and r would be equal to the distances PQO and OP, respectively, 
and inclination factors would appear in most equations. 

(1) 

479 



Volume 104, Number 5, September-October 1999 

Journal of Research of the National Institute of Standards and Technology 

Fig. 1. Lensless imaging by a circular aperture si of diameter la. S^o = object plane, Po = object point, 
O = aperture center, if= screen, BPCB' = geometrical image, c = PC = radial distance from image center. 

A general idea of the nature of the diffraction limit for 
lensless imaging can be obtained from a classical paper 
by Petzval [1], who assumed that for ro » r every im- 
age point P is spread by Fraunhofer diffraction and thus 
has a finite width on the order of IXrIa. The aggregate 
image width 2Ac exceeds the geometrical width 2a by 
the same amount so that Ac = a + Xrla, or AV/VM as 
shown by the upper curve in Fig. 2. This total image 
radius has a minimum for VM = TT/VU SO that 

(M)P (AV/VM )petzvai = 2VTT, 

where (2a )prtzvai is the aperture diameter expected to give 
the sharpest image. Petzval's analysis is admirable on 
account of its simplicity, although the Fraunhofer ap- 
proximation is not applicable for lensless imaging and 
the incoherent superposition of elementary diffraction 
patterns is inadmissible. 

It is easy to show that Petzval's result for u is consis- 
tent with the quarter-wave criterion of resolution. Let A 
be a point located on the spherical wavefront 'W^ incident 
on the aperture and on a marginal ray passing at the 
aperture center, so that 

(2a)p. ro » r. (2) AC^ = PoA^ + PoC^ - IPoAPoCcosy, (3a) 

Fig. 2. Petzval's estimate. The diffraction limit occurs at the intersec- 
tion, H = IT, of the image widths due to diffraction (left) and geometri- 
cal optics (right). 

as may be seen by applying the cosine theorem to the 
triangle PQAC. In the paraxial approximation cos;8 ~ 1 
one finds PQA = PQO ~ ro and AC ~ r + Ar, where Ar is 
the small path difference AC — OC. Therefore, 

Ar = 
?-o(ro + r)(l cosy) _ a-(ro + r) _ AM 

2ror     ~4TT' ' 

where it was assumed that Ar" « r^ and y was evalu- 
ated as the small angle a/ro. This proves that the quarter- 
wave criterion is satisfied when u = '^. 

A further refinement of the theoretical treatment re- 
quires the Fresnel-Lommel equations [2] which govern 
the diffraction effects of lensless imaging, 

E(U,V) = £geom(v)la(M,v)P,       £'geom(v) =  2/"   "      x2 > 
7TCI yfo + r) 

(4a) 
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la(M,v)P = ^[L-(u,v) + M\u,v)l (4b) 

where E(u,v) is the irradiance at the point P of Fig. 1, 
£geom(v) is the geometrical irradiance in the absence of 
diffraction, 0o is the radiant flux admitted by the aper- 
ture, IQ:(M,V)P is the modification of £'geom(v) by diffrac- 
tion, and L(M,V) and M(«,v) are functions defined by 
Lommel as linear combinations of infinite series of Bes- 
sel functions. 

In the past, computations based on these equations 
were tedious but nonetheless Lommel provided numeri- 
cal tables of £(M,V) and Rayleigh [3] used these tables 
for a further analysis of pinhole imaging. Rayleigh plot- 
ted the diffraction profiles which are reproduced here as 
Fig. 3 and, without additional calculations, judged that 
"M = '/2TT is too large and u = STT is too great. The only 
question that can arise is between u = TI and u = 2TI. 

The latter has decidedly the higher resolving power, but 
the advantage is to some extent paid for in the greater 

diffusion of light outside the image proper." He con- 
ducted visual and photographic experiments to settle 
this question and found that the sharpest images were 
obtained for 

"Rayleigh = 1.8TT,       (2a) Rayleigh ' : V3.6Aror/(ro + r).   (5) 

Rayleigh did not explicitly state the image size corre- 
sponding to this value of u. However, he showed that, for 
any aperture diameter 2a and in the limit ro » r, the 
greatest path difference at the point P in Fig. 1 is laclr, 
so that ''the illumination will not be greatly reduced 
until the extreme discrepancy of phase reaches half a 
wavelength." This gives 2Ac = Xrlla or Av = O.Sir, 
which turns out to be an excellent estimate of the onset 
of resolution in the sense of the Sparrow criterion [4] 
because the relative central irradiance" in the com- 
posite pattern of two Lommel profiles separated by 
2AV/VM = TT/VM, 

v/Vu v/Vu 

Fig. 3. Normalized Fresnel-Lommel diffraction profiles for u = 0.5 TT, IT, 2TT, and Sir. 

Equation (6a) is approximate in that it ignores the "shrinkage" 
caused by the fact that the maxima of the composite pattern do not 
coincide exactly with the maxima of the superimposed profiles. 
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2E(u,Av/Vu) 
1 +E(u,2Av/Vu)' 

(6a) 

is 0.9974 for M = TT, 0.9967 for u = 1.8-17, and 1.0086 for 
the Airy profile defined by Eq. (7a), below. Accord- 
ingly, the smallest discernible detail (pixel) in a com- 
posite image is given by 

AV; Sparrow ' :0.5T7. (6b) 

2.    Analysis 

As the use of Lommel's equations [Eqs. (4a,b)] for 
numerical computations is no longer a problem, it is the 
purpose of this paper to re-examine the question of an 
optimal aperture diameter for lensless imaging and to 
characterize the resulting image distribution of irradi- 
ance and radiant flux in quantitative terms. This work 
was performed using the algorithms for Fresnel diffrac- 
tion published in Ref. [5], which should be consulted for 
mathematical and computational details. Readers wish- 
ing to perform computations may also consult a recent 
paper on a similar topic by Shirley [6]. 

When a lens is placed at the aperture ^ in Fig. 1 and 
SpQ and Sf are conjugate object and image planes, the 
irradiance distribution in the diffraction pattern will be 
given by the Fraunhofer-Airy formula. 

E{v) = 
•foTTfl" 2J,(v) 

(7a) 

where J| is the first-order Bessel function of the first 
kind and the other quantities are the same as above. As 

this equation also applies to Fresnel-Lommel diffraction 
in the limit u -^ 0,^ it will be useful to analyze the 
profiles in Fig. 3 by criteria which are equivalent to 
accepted criteria for assessing lens images. The proper- 
ties of the Airy function [Eq. (7a)] that will be used for 
this purpose are listed in Table 1, where the values in the 
last column represent the fractions of the total flux <l>o 
contained in a circle of radius Av, 

/(A 

Av 

v) = 5|dvv 
2J,(v) 

= 1 - J^(Av) - JT(AV),   (7b) 

according to a formula derived by Rayleigh in an article 
on the wave theory of light [6]. The best known quantity 
shown in Table 1 is the radius AvMry of the central 
maximum (Airy disk). Because 84 % of the total flux is 
concentrated in the central disk, it is often assumed that 
the diffraction pattern consists of the Airy disk alone. 

Figure 3 shows at a glance that width criteria based 
on a single irradiance value would be unreliable mea- 
sures of image sharpness as they favor the central por- 
tion of the profiles and ignore the formation of a second 
maximum which is evident in the figures. For example, 
the halfwidth of the profiles decreases monotonically 
until, near u = 317, the profile turns up before reaching 
the half-power point. On the other hand, the area width 
defined in the third row of Table 1 is quite suitable as it 
measures the feature which is most obvious on visual 
inspection of these profiles; namely, the concentration 
of E(u,v)/E(u,0) near the ordinate axis. Rayleigh may 
have used it intuitively when judging these profiles, and 
in this work it was applied mathematically by means of 
the quadrature formula 

Table 1. Properties of the Airy diffraction profile [Eq. (7a)] 

Property Definition Av £(Av)/£(0) /(Av) 

Sparrow limit Av = 0.5 Ti 0.5 TT 0.520 855 0.455 925 

Area width Av/fdvp'C^T 
J    L   V   J 
0 

^ = 0.540 38077 0.463 082 0.506 873 

Rayleigh width Av = 0.5  AvAiry 0.609 83517 0.367 516 0.588 443 

Airy disk, AvAi,y E(v) = 0 1.219 67017 0 0.837 785 

' In this limit, Eq. (7a) results because one has IQ;(H,V)P —> (MJI(V)/V)^. 

However, it is misleading to refer to the Fraunhofer-Airy formula as 

a "pinhole limit". The aperture diameters used in pinhole photography 

are on the order of 0.5 mm to 1 mm and, as shown by Eqs. (2) and 

(5), correspond to fairly large values of u except for infinitely large 

image distances. 
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1 

u\a(uff)\ 
■\ dvla(M,v) 

8v 

MIWOI «=0 
El«J% (8) 

which allows computations of area widths by straight- 
forward summation of la„P = IQ;(M,V„)P for equidistant 
arguments v„ = (« + ^li) 8v up to a largest value N for 
which \aS' is suitably small. The increments and upper 
limits used were 8v = 0.01 u and N = 500, resulting in 
numerical values accurate to six digits or better. As 
shown in Fig. 4, these computations revealed the exis- 
tence of a shallow minimum near 

M=1.7TT,    AV/\4 = 0.910 925, (9) 

which differs insignificantly from the value 1.8TT found 
by Rayleigh, and thus verifies that the latter is consistent 
with the area width criterion. 

Fig. 4. Area width AI'/VM and flux fractions/(Ay/V«) as functions 
of u. 

However, what really determines the sharpness of the 
image is not the concentration of irradiance as plotted in 
Fig. 3 but the physical concentration of radiant flux in 
the image plane itself. This aspect was mentioned but 
not explored by Rayleigh, and will be considered next. 
The quantity required for this purpose is the fractional 
flux contained in a circle of radius Ac = XrAv/lira in 
the image plane, as in Eq. (6b), and thus Eqs. (4a,b) 
were used to derive the following summation formula 
for Lommel profiles. 

/(4 v/v;,=|/. 

^(8v| 
2«' 

dc cE{u,v) -   2 
0 0 

2(2n+l){laJ- + la„„P}, 

Av ; f 
21 dv v\a{u,v) 

(10) 

where the notation is the same as in Eq. (8) but v and 
I a (M , V) P are replaced by their arithmetic means for each 
element of summation. Equation (10) was used to gener- 
ate lists, accurate to six digits, of/(Av/V«) for consec- 
utive upper limits A^ < 500 and increments 8v = 0.01M. 

These lists were used as lookup tables, and linear inter- 
polation was used to obtain final results for given values 
of u and Av/vu. 

The values of/(Av/VM) obtained in this manner for 
the area widths computed earlier are plotted as the lower 
curve in Fig. 4. While approaching 50 % for small val- 
ues of «, as should be expected from Table 1, these flux 
fractions decrease for larger values of u and, where 
AV/VM is a minimum, they are only on the order of 
35 %. This was deemed insufficient for judging the pro- 
files in their entirety. Therefore, it was decided to apply 
Eq. (10) in a different manner so that it would directly 
yield the values of u for which/(Av/VM) is contained in 
the smallest possible width Av/vu). The flux fractions 
used for these computations were 0.3333, 0.5, 0.6667, 
0.75, and 0.8378, the latter being equivalent to the Airy 
disk in Table 1. The results obtained are illustrated in 
Fig. 5, showing that a shallow but discernible minimum 
of AV/VM exists for every/(AV/VM). The values of u at 
which these minima occur are all different. However, as 
shown by Fig. 6, they are neatly clustered around a 
median value of 

M = T7, (11) 

which was considered the best overall choice of M based 
on the concentration of radiant flux in the image. 

Av/Vu 

Fig. 5. Flux widths  Av/\4 for /(Av/V^ = 0.3333,  0.6667,  and 
0.8378. 
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0.25 0,5 075 f(AV/Vu) ' 

Fig. 6. Dependence of best u on flux fraction/(Av/Vu). 

As a final test, we calculated the relative central irra- 
diance using Eq. (6a) in the composite pattern of two 
Lommel profiles separated by given amounts 2Av/VM. 

The results obtained are plotted in Fig. 7, showing that 
for the usual definition of resolving power in terms of a 
relative central irradiance on the order of 0.7 the config- 
uration parameter «= I.STT is superior. On the other 
hand, the advantage lies with U = 'T! when larger separa- 
tions are considered, as has often been advocated. 

■I - 
V 

E 
LLl 

E 
m 

\\ 
0.5 - '~4 U=1.8Tt 

n ■  1 1 1 1 1 

0.5 2.5      v/Vu 

Fig. 7. Relative central irradiance, E,„;„/E^„, in the composite pattern 
of two Lommel profiles separated by 2Av/V« for « = ii and l.Sir. 

3.    Conclusions 

On account of the complicated nature of the Lommel 
profiles it is no surprise that the above analysis gives no 
unequivocal answer regarding a best configuration 
parameter u for lensless imaging. We have verified 
Rayleigh's value as a minimum of area width, con- 
firmed Petzval's value by computations of flux widths, 
and were unable to make a choice using the theory of 
resolution. This ambiguity can undoubtedly be at- 
tributed to the fact that the various minima of image size 

found in this analysis are all shallow so that, on the 
whole, the difference between u = 'n and 1.8TT is in- 
significant for practical purposes. The same can be in- 
ferred from the observation made by writers on pinhole 
photography that, although the best aperture diameters 
are usually stated within 0.01 mm, deviations on the 
order of 0.1 mm have little effect on image quality. It 
appears that Rayleigh reached a similar conclusion. He 
mentioned that Petzval's value, u = 'n, was quoted in a 
pamphlet on pinhole photography and remarked that the 
corresponding ''detail in a photograph ... was not 
markedly short of that observable by direct vision. " At 
the same time, he stated that images obtained for 
u = 1.817 'fully bore out expectations." 

It would of course be possible to compromise and 
adopt an intermediate best value of u. This seemed 
inadvisable as it might be misinterpreted as an improve- 
ment or refinement of the results obtained by Petzval 
and Rayleigh. The above analysis has shown that both 
are valid and that there is a fairly wide range of M'S 

which give acceptably sharp images. This is in fact a 
practical advantage, as it permits the use of one and the 
same aperture for a variety of image distances and/or 
wavelengths. 

However, from a theoretical point of view it is desir- 
able to have a value which is, not only consistent with 
experience, but also conforms to accepted criteria used 
elsewhere for assessing image quality. On this basis, 
M = 17 is preferable as it is consistent with the quarter- 
wave criterion whereas u= I.STT is not. By the same 
token, the Sparrow width in Eq. (6b) is theoretically 
superior to the value in Eq. (2) because it conforms to 
the half-width criterion. Accordingly, the final result 
adopted in this paper for the diffraction limit of lensless 
imaging is 

Av/Vu > 0.5VT7,    2a ■■ : V2Aror/(ro + r), 
(12) 

where 0.5VTT is the pixel size, defined as the smallest 
discernible detail in accordance with the Sparrow crite- 
rion. Equation (12) should not be construed as a criti- 
cism of Rayleigh's astute assessment of the Lommel 
profiles in Fig. 3. It merely ensures that the diffraction 
limits for imaging with and without lenses are defined 
consistently, but does not affect the practical aspects of 
Rayleigh's work. Yet, from a historical perspective it is 
interesting that Rayleigh did not apply his own quarter- 
wave criterion to define u while, at the same time, he 
used a half-wave criterion to define the image size. 

The optical and radiometric properties of the Lom- 
mel profile for M = IT are summarized in Table 2. Four of 
these parameters were defined to be equivalent to the 
values given in Table 1 for Airy profiles. The fifth is the 
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Table 2. Properties of the Lommel Diffraction Profile [Eqs. (4a,b)] for « = w 

Property Definition Av/\4 £„, /(Av/V^) £mi„/£„ax 

Sparrow limit Av = 0.577 0.886 227 0.525 145 0.380 803 0.997 362 

Area width Eq. (7) 1.023 941 0.417 900 0.458 319 0.808 131 

Rayleigh width Av = 0.5  AvAiry 1.498 744 0.136 878 0.647 732 0.265 165 

Geometrical width Av = 'ir 1.772 454 0.060 510 0.698 182 0.123 190 

Airy disk, Av'Airy /(Av/\4) = 0.837 785 2.997 488 0.032 497 0.837 785 0.064 741 

geometrical width Av/VM = v« that would be obtained 
in the absence of diffraction."* The remaining columns of 
Table 2 show the numerical values of Av/VM and the 
corresponding relative irradiances Erei = E(u,Av/yu)/ 
E(u,0), flux fractions/(AV/VM), and relative central 
irradiance ^min/fimax in a double image. The equivalent 
Airy disk in Table 2 is defined so that the corresponding 
flux fraction is the same as for the Airy profile, and the 
Rayleigh width is half as large;^ their numerical values 
can be closely approximated by 3 and 1.5, respectively. 
It should be noted that the geometrical width is twice as 
large as the Sparrow width and appears near the bottom 
of the table. This shows that, on the whole, the diffrac- 
tion-limited image is sharper than the geometrical im- 
age. 
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